Published in

Progress in Nanotechnology, p. 95-100

DOI: 10.1002/9780470588260.ch13

Wiley, Journal of the American Ceramic Society, 0(0), p. 070916231959005-???, 2007

DOI: 10.1111/j.1551-2916.2007.02034.x

Links

Tools

Export citation

Search in Google Scholar

Effect of Nanosilica Additions on Belite Cement Pastes Held in Sulfate Solutions

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Fly Ash Belite Cement (FABC) pastes with and without nanosilica additions have been prepared and maintained in sulfate solutions (Na2SO4 0.5M) for 180 days. The mechanical performance and the changes in microstructure have been monitored at 28, 90, and 180 days by compressive strength, X-ray diffraction (XRD), and 29Si MAS NMR measurements. We have found that, unexpectedly, and contrary to what happens in Ordinary Portland Cements (OPC), the addition of nanosilica particles induces an initial decline in the compressive strength of the samples. Only in samples maintained for a long time (180 days) does the nanosilica addition improve the mechanical properties. Our XRD and 29Si NMR experiments have revealed that although nanosilica additions trigger the consumption of Belite phases, this is not always accompanied by formation of longer calcium–silicate–hydrate (C–S–H) gel structures. Only at a long time (180 days), and due to a mechanism that seems to be controlled by the pH of the samples, do the nanosilica additions lead to high-polymerized C–S–H gels.