Elsevier, Vaccine, 29-30(29), p. 4690-4697, 2011
DOI: 10.1016/j.vaccine.2011.04.096
Full text: Download
Main obstacles to cancer vaccine efficacy are pre-existing antigenic load and immunoescape mechanisms, including tolerance against self tumor-associated antigens. Here we explored the role of tolerance in an antimetastatic vaccine approach based on dendritic cell-tumor cell (DC-TC) hybrids, thanks to the comparison between BALB-neuT mice, transgenic for and tolerant to rat HER-2/neu, with their non-tolerant strain of origin BALB/c. Allogeneic DC-TC hybrid vaccine displayed a high antimetastatic activity in non-tolerant mice, but was far less effective in tolerant mice, even with intensified vaccine schedule. Tolerant BALB-neuT mice revealed a reduced ability to mount polarized Th1 responses. A further attempt to increase the antimetastatic activity by using LPS-matured DC hybrids failed. Allogeneic LPS-matured DC-TC hybrids induced high IFN-γ levels, but concomitantly also the highest production of IL-4 and IL-10 suggesting activation of mechanisms sustaining regulatory cells able to blunt vaccine efficacy. Our data in tolerant versus non-tolerant hosts suggest that clinical translation of effective DC-based strategies could benefit from more extensive investigations in tolerant transgenic models.