Published in

IOP Publishing, Nanotechnology, 1(22), p. 015602, 2010

DOI: 10.1088/0957-4484/22/1/015602

Links

Tools

Export citation

Search in Google Scholar

Ultra-thin PtFe-nanowires as durable electrocatalysts for fuel cells

Journal article published in 2010 by Zhiyong Zhang, Meijun Li, Zili Wu ORCID, Wenzhen Li
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Ultra-thin Pt(x)Fe(y)-nanowires (Pt(x)Fe(y)-NWs) with a diameter of 2-3 nm were successfully prepared through a solution-phase reduction method at Pt-Fe compositions from 1:1 to 2:1. The carbon supported Pt(x)Fe(y)-NWs (Pt(x)Fe(y)-NWs/C) demonstrated higher oxygen reduction reaction (ORR) activity and better electrochemical durability than conventional Pt/C catalyst. After 1000 cycles of 0-1.3 V (versus RHE), the relative electrochemical surface area (ECSA) of Pt(2)Fe(1)-NW/C dropped down to 46%, which was two times better than Pt/C catalyst, and the mass activity at 0.85 V (versus RHE) for Pt(1)Fe(1)-NW/C was 39.9 mA mg(-1)-(Pt), which is twice that for Pt/C (18.6 mA mg(-1)-(Pt)).