Published in

Oxford University Press (OUP), Plant & Cell Physiology, 7(42), p. 723-732

DOI: 10.1093/pcp/pce091

Links

Tools

Export citation

Search in Google Scholar

Fate of nascent microtubules organized at the M/G1 interface, as visualized by synchronized tobacco BY-2 cells stably expressing GFP-tubulin: Time-sequence observations of the reorganization of cortical microtubules in living plant cells

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Transgenic BY-2 cells stably expressing a GFP (green fluorescent protein)-tubulin fusion protein (BY-GT16) were subcultured in a modified Linsmaier and Skoog medium. The BY-GT16 cells could be synchronized by aphidicolin and the dynamics of their microtubules (MTs) were monitored by the confocal laser scanning microscopy (CLSM). We have succeeded in investigating the mode of reorganization of cortical MTs at the M/G1 interface. The cortical MTs were initially organized in the perinuclear regions and then they elongated to reach the cell cortex, forming the bright spots there. Subsequently, the first cortical MTs rapidly elongated from the spots and they were oriented parallel to the long axis towards the distal end of the cells. Around the time when the tips of the parallel MTs reached the distal end, the formation of transverse cortical MTs followed in the cortex near the division site, as we had previously suggested [Hasezawa and Nagata (1991) Bot. Acta 104: 206, Nagata et al. (1994) Planta 193: 567]. It was confirmed in independent observations that the appearance of the parallel MTs was followed by the appearance of the transverse MTs in each cell. We found that the transverse MTs spread through the whole cell cortex within about 20-30 min, while the parallel MTs disappeared. The significance of these observations on the mode of cortical MT organization is discussed.