Published in

American Geophysical Union, Journal of Geophysical Research, D2(114), 2009

DOI: 10.1029/2008jd011326

Links

Tools

Export citation

Search in Google Scholar

Stable carbon isotope composition of secondary organic aerosol from β-pinene oxidation

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

A chamber study was carried out to investigate the stable carbon isotopic composition (δ13C) of secondary organic aerosol (SOA) formed from ozonolysis of β-pinene. β-Pinene (600 ppb) with a known δ13C value (−30.1‰) and 500 ppb ozone were injected into the chamber in the absence of light and the resulting SOA was collected on preheated quartz fiber filters. Furthermore, δ13C values of the gas-phase β-pinene and one of its oxidation products, nopinone, were measured using a gas chromatograph coupled to an isotope ratio mass spectrometer (GC-IRMS). β-Pinene was progressively enriched with the heavy carbon isotope due to the kinetic isotope effect (KIE). The KIE of the reaction of β-pinene with ozone was measured to be 1.0026 (O3$ɛ$ 2.6 ± 1.5‰). The δ13C value of total secondary organic aerosol was very similar to that of its precursor (average = −29.6 ± 0.2‰) independent of experiment time. Nopinone, one of the major oxidation products of β-pinene, was found in both the gas and aerosol phases. The gas-phase nopinone was heavier than the initial β-pinene by 1.3‰ but lighter than the corresponding aerosol-phase nopinone. On average, the gas-phase nopinone was lighter by 2.3‰ than the corresponding aerosol-phase nopinone. The second product found in the SOA was detected as acetone, but it desorbed from the filter at a higher temperature than nopinone, which indicates that it is a pyrolysis product. The acetone showed a much lower δ13C (−36.6‰) compared to the initial β-pinene δ13C.