Published in

Elsevier, Advances in Space Research, 8(51), p. 1551-1564

DOI: 10.1016/j.asr.2012.07.033

Links

Tools

Export citation

Search in Google Scholar

Detection of Envisat RA2/ICE-1 retracked radar altimetry bias over the Amazon basin rivers using GPS

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

ISI Document Delivery No.: 129XZ Times Cited: 1 Cited Reference Count: 54 Cited References: Alsdorf DE, 2007, REV GEOPHYS, V45, DOI 10.1029/2006RG000197 Altamimi Z., 2007, J GEOPHYS RES, V112 [Anonymous], 2009, PORSMDAGS2009, V14 Beckley BD, 2007, GEOPHYS RES LETT, V34, DOI 10.1029/2007GL030002 Berry PAM, 2005, GEOPHYS RES LETT, V32, DOI 10.1029/2005GL022814 BIRKETT C, 1995, INT GEOSCI REMOTE SE, P1979 Birkett CM, 2002, J GEOPHYS RES-ATMOS, V107, DOI 10.1029/2001JD000609 Birkett CM, 1998, WATER RESOUR RES, V34, P1223, DOI 10.1029/98WR00124 Bonnefond P, 2003, MAR GEOD, V26, P261, DOI 10.1080/01490410390251623 Bonnefond P., 2010, MARINE GEODESY S1, V33, P80 Bonnet MP, 2008, J HYDROL, V349, P18, DOI 10.1016/j.jhydrol.2007.10.055 BROWN GS, 1977, IEEE T ANTENN PROPAG, V25, P67, DOI 10.1109/TAP.1977.1141536 Calmant S, 2008, SURV GEOPHYS, V29, P247, DOI 10.1007/s10712-008-9051-1 Campos ID, 2001, CR ACAD SCI II A, V333, P633 Cheng KC, 2008, TERR ATMOS OCEAN SCI, V19, P53, DOI 10.3319/TAO.2008.19.1-2.53(SA) Cheng KC, 2009, MAR GEOD, V32, P267, DOI 10.1080/01490410903094460 Cretaux JF, 2011, MAR GEOD, V34, P291, DOI 10.1080/01490419.2011.585110 Cretaux JF, 2009, J GEODESY, V83, P723, DOI 10.1007/s00190-008-0289-7 Cretaux JF, 2013, ADV SPACE RES, V51, P1523, DOI 10.1016/j.asr.2012.06.039 Frappart F, 2008, J GEOPHYS RES-ATMOS, V113, DOI 10.1029/2007JD009438 Frappart F, 2006, REMOTE SENS ENVIRON, V100, P252, DOI 10.1016/j.rse.2005.10.027 Fund F, 2013, ADV SPACE RES, V51, P1311, DOI 10.1016/j.asr.2012.09.028 Getirana ACV, 2009, J HYDROL, V379, P205, DOI 10.1016/j.jhydrol.2009.09.049 Google Inc, 2012, GOOGL EARTH VERS 6 2 Guskowska M.A.J., 1990, DEV INLAND WATER LAN Herring T A, 2006, GAMIT REFERENCE MANU Jung H.C., 2010, EARTH SURFACE PROCES KOBLINSKY CJ, 1993, WATER RESOUR RES, V29, P1839, DOI 10.1029/93WR00542 Kouraev AV, 2004, REMOTE SENS ENVIRON, V93, P238, DOI 10.1016/j.rse.2004.07.007 Lee H, 2009, MAR GEOD, V32, P284, DOI 10.1080/01490410903094767 Lee H, 2011, REMOTE SENS ENVIRON, V115, P3530, DOI 10.1016/j.rse.2011.08.015 LeFavour G, 2005, GEOPHYS RES LETT, V32, DOI 10.1029/2005GL023836 Legresy B, 1997, J GLACIOL, V43, P265 Legresy B., 1995, CTEDTUUD96188 CNES Marty J.C., 2009, DOCUMENTATION ALGORI Moreira D., ABSOLUTE WATER UNPUB Morel L, 2002, ADV SPACE RES-SERIES, V30, P255, DOI 10.1016/S0273-1177(02)00293-4 Pavlis N. K., 2008, P 2008 GEN ASS EUR G Pereira-Cardenal SJ, 2011, HYDROL EARTH SYST SC, V15, P241, DOI 10.5194/hess-15-241-2011 Roca M., 2002, P ENV VAL WORKSH FRA Rosenqvist A, 2000, INT J REMOTE SENS, V21, P1375, DOI 10.1080/014311600210227 Seyler F., 2008, J APPL REMOTE SENS, V7150, DOI [DOI 10.1117/12.813258, 10.1117/12.813258] Shum C, 2003, MAR GEOD, V26, P335, DOI 10.1080/01490410390253487 Siddique-E-Akbor AHM, 2011, REMOTE SENS ENVIRON, V115, P1522, DOI 10.1016/j.rse.2011.02.011 Silva J.S., WATER RESOURCE UNPUB Silva J.S., 2010, REMOTE SENS ENVIRON, V114, P2160 SILVA J.S.D., 2012, INT J REMOTE SENS, V33, P3323 TRENBERTH KE, 1988, B AM METEOROL SOC, V69, P1047, DOI 10.1175/1520-0477(1988)0692.0.CO;2 VALS Tool, 2012, VALS TOOL VIRTUAL AL Watson C, 2011, MAR GEOD, V34, P242, DOI 10.1080/01490419.2011.584834 Watson C, 2004, MAR GEOD, V27, P108, DOI 10.1080/01490410490465373 Wingham D.J., 1986, ESA, P1339 Yi Y., 2003, ENV RA2 MWR CCVT 6 P Zhang MM, 2010, INT J REMOTE SENS, V31, P3913, DOI 10.1080/01431161.2010.483495 Calmant, Stephane da Silva, Joecila Santos Moreira, Daniel Medeiros Seyler, Frederique Shum, C. K. Cretaux, Jean Francois Gabalda, Germinal SEYLER, Frederique/D-5518-2011; SILVA, Joecila/B-1478-2014 CPRM; IRD (Project Hidrodinamica Fluvial); CNES (TOSCA project FOAM); CNPq; FINEP The Envisat data were extracted from the CTOH database. GPS field work was funded by CPRM and IRD (Project Hidrodinamica Fluvial) and by CNES (TOSCA project FOAM). The authors thank the students of UEA (Universidade do Estado do Amazonas, Brazil) involved in the Research Initiation Program of the RHASA Research Team, who participated to computing the Envisat time series. Their work is part of the CASAM and IHESA projects, respectively funded by CNPq and by FINEP. 1 ELSEVIER SCI LTD OXFORD ADV SPACE RES ; Altimetry is now routinely used to monitor stage variations over rivers, including in the Amazon basin. It is desirable for hydrologic studies to be able to combine altimetry from different satellite missions with other hydrogeodesy datasets such as leveled gauges and watershed topography. One requirement is to accurately determine altimetry bias, which could be different for river studies from the altimetry calibrated for deep ocean or lake applications. In this study, we estimate the bias in the Envisat ranges derived from the ICE-1 waveform retracking, which are nowadays widely used in hydrologic applications. As a reference, we use an extensive dataset of altitudes of gauge zeros measured by GPS collocated at the gauges. The thirty-nine gauges are spread along the major tributaries of the Amazon basin. The methodology consists in jointly modeling the vertical bias and spatial and temporal slope variations between altimetry series located upstream and downstream of each gauge. The resulting bias of the Envisat ICE-1 retracked altimetry over rivers is 1.044 +/- 0.212 m, revealing a significant departure from other Envisat calibrations or from the Jason-2 ICE-1 calibration. (C) 2012 COSPAR. Published by Elsevier Ltd. All rights reserved.