Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Nano Letters, 12(10), p. 5109-5115, 2010

DOI: 10.1021/nl1036098

Links

Tools

Export citation

Search in Google Scholar

CdSe Quantum Dots for Two-Photon Fluorescence Thermal Imaging

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The technological development of quantum dots has ushered in a new era in fluorescence bioimaging, which was propelled with the advent of novel multiphoton fluorescence microscopes. Here, the potential use of CdSe quantum dots has been evaluated as fluorescent nanothermometers for two-photon fluorescence microscopy. In addition to the enhancement in spatial resolution inherent to any multiphoton excitation processes, two-photon (near-infrared) excitation leads to a temperature sensitivity of the emission intensity much higher than that achieved under one-photon (visible) excitation. The peak emission wavelength is also temperature sensitive, providing an additional approach for thermal imaging, which is particularly interesting for systems where nanoparticles are not homogeneously dispersed. On the basis of these superior thermal sensitivity properties of the two-photon excited fluorescence, we have demonstrated the ability of CdSe quantum dots to image a temperature gradient artificially created in a biocompatible fluid (phosphate-buffered saline) and also their ability to measure an intracellular temperature increase externally induced in a single living cell.