Links

Tools

Export citation

Search in Google Scholar

Transport and chemistry of sulfur and bromine compounds in the upper troposhere and lower stratosphere diagnosed by balloon and aircraft measurements and modelling

Journal article published in 2013 by Gisèle Krysztofiak ORCID
This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Ozone depletion is a complex subject involving several processes starting by the emission of the sources gases (SGs) in the lower troposphere. Recently the VSLS (very short lived substances) have been identified as potential SGs. However they do not have a lifetime long enough to reach directly the stratosphere. During the transport, the VSLS undergo degradation leading to products gases (PGs). The SGs and PGs of the VSLS reach the stratosphere in the Tropical region where a rapid vertical transport occurs, the convection. The SGs with longer lifetime can reach the stratosphere by any transport pathway from the location of their emissions. Once in stratosphere the SGs and PGs will be converted into reactive species able to deplete ozone. This thesis presents the study of the several steps occurring before the ozone depletion: SGs emission, SGs and PGs transport into the atmosphere, the chemical degradation occurring during their transport and finally their contribution to the ozone depletion. First, chemical tracers, as CO, are used to highlight the main pathways from the troposphere to the stratosphere. Then two studies of two different types of species entering in the process of ozone destruction are presented: for OCS (carbonyl sulfide) and the brominated VSLS (CHBr3 et CH2Br2). OCS is one of the sulfate aerosols precursors catalyzing the ozone depletion. However, OCS contribution to this layer has some uncertainties. OCS emission sources, the latitude repartition and the contribution to the sulfate aerosols are presented. The contribution of the brominated VSLS to the stratospheric bromine is a key issue that being almost resolved. The brominated VSLS chemical degradation during the atmospheric transport will be described in detail.