Published in

Oxford University Press (OUP), Brain, 4(136), p. 1083-1101

DOI: 10.1093/brain/awt020

Links

Tools

Export citation

Search in Google Scholar

Immune cells perturb axons and impair neuronal survival in a mouse model of infantile neuronal ceroid lipofuscinosis

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The neuronal ceroid lipofuscinoses are fatal neurodegenerative disorders in which the visual system is affected early in disease progression. A typical accompanying feature is neuroinflammation, the pathogenic impact of which is presently obscure. Here we investigated the role of inflammatory cells in palmitoyl protein thioesterase 1-deficient (Ppt1(-/-)) mice, a model of infantile neuronal ceroid lipofuscinosis (CLN1 disease, infantile), predominantly focusing on the visual system. We detected an early infiltration of CD8+ T-lymphocytes and observed activation of microglia/macrophage-like cells. To analyse the pathogenic impact of lymphocytes, we crossbred Ppt1(-/-) mice with mutants lacking lymphocytes (Rag1(-/-)), and scored axonal transport, axonal perturbation and neuronal survival. This lack of lymphocytes led to a significant amelioration of disease phenotypes, not only in the retino-tectal system, but also in other regions of the central nervous system. Finally, reconstitution experiments revealed a crucial role of CD8+ T-lymphocytes in pathogenesis. Our study provides novel pathomechanistic insights that may be crucial for developing treatment strategies.