Published in

Episciences.org, Discrete Mathematics & Theoretical Computer Science, Proceedings(DMTCS Proceedings vol. AQ,...), 2012

DOI: 10.46298/dmtcs.2979

Links

Tools

Export citation

Search in Google Scholar

A New Binomial Recurrence Arising in a Graphical Compression Algorithm

Journal article published in 2012 by Yongwook Choi ORCID, Charles Knessl, Wojciech Szpankowski
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In a recently proposed graphical compression algorithm by Choi and Szpankowski (2009), the following tree arose in the course of the analysis. The root contains n balls that are consequently distributed between two subtrees according to a simple rule: In each step, all balls independently move down to the left subtree (say with probability $p$) or the right subtree (with probability 1-$p$). A new node is created as long as there is at least one ball in that node. Furthermore, a nonnegative integer $d$ is given, and at level $d$ or greater one ball is removed from the leftmost node before the balls move down to the next level. These steps are repeated until all balls are removed (i.e., after $n+d$ steps). Observe that when $d=∞$ the above tree can be modeled as a $\textit{trie}$ that stores $n$ independent sequences generated by a memoryless source with parameter $p$. Therefore, we coin the name $(n,d)$-tries for the tree just described, and to which we often refer simply as $d$-tries. Parameters of such a tree (e.g., path length, depth, size) are described by an interesting two-dimensional recurrence (in terms of $n$ and $d$) that – to the best of our knowledge – was not analyzed before. We study it, and show how much parameters of such a $(n,d)$-trie differ from the corresponding parameters of regular tries. We use methods of analytic algorithmics, from Mellin transforms to analytic poissonization.