Published in

Elsevier, Archives of Biochemistry and Biophysics, 1(283), p. 141-149, 1990

DOI: 10.1016/0003-9861(90)90624-8

Links

Tools

Export citation

Search in Google Scholar

Human immunodeficiency viral protease is catalytically active as a fusion protein: Characterization of the fusion and native enzymes produced in Escherichia coli

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Processing of the gag and pol gene precursor proteins of retroviruses is essential for the production of mature infectious virions. The processing is directed by a viral protease that itself is part of these precursors and is presumed to cleave itself autocatalytically. To facilitate study of this process, the protease was produced as a fusion protein in Escherichia coli. In this construct, the 10,793-Da protease was preceeded by two copies of a modified IgG binding domain derived from protein A. The IgG binding domain was linked to the protease by an Asp-Pro peptide bond which could not be cleaved by the viral protease. A dimer of the 25,400-Da fusion protein was catalytically active, specifically cleaving a substrate peptide at the correct Tyr-Pro bond. Thus, the fusion protein could serve as a model of the viral gag-pol polyprotein. The finding that the fusion protein was catalytically active supports the suggestion that a gag-pol dimer can initiate a proteolytic cascade after budding of the immature virus. The fusion protein also provided a source of authentic protease. The protease was released from the fusion construct by incubation with formic acid, cleaving the Asp-Pro linkage which had been inserted between the IgG binding domain and the protease.