American Scientific Publishers, Journal of Nanoscience and Nanotechnology, 8(11), p. 6705-6709
Full text: Download
Antigenic peptides may be immobilized in nanostructured films in order to build highly specific immunosensors and other devices that require molecular recognition, with no need to use complex molecules. A major challenge for such endeavors, however, is to preserve the secondary structure of the peptides after immobilization. In this study, we show that the peptide p17-1 (LSGGELDRWEKIRLRPGG), derived from the HIV-1 p17 protein, may be immobilized in Layer-by-Layer (LbL) films made with polyelectrolytes. Its structure was preserved only if incorporated into phospholipid liposomes, according to fluorescence and circular dichroism (CD) spectroscopy. The lack of secondary structure for the peptide in the LbL film may be associated with the film-forming procedure in which p17-1 was adsorbed from an aqueous solution, where it does not form alpha helices. The importance of structure preservation was clear in the attempts to produce electrochemical immunosensors with the p17-1 peptide without being protected in liposomes in an LbL film. There was no detectable influence of the presence of anti-p17 antibodies, though some molecular interaction could be inferred from the voltammograms. In contrast, for p17-1 incorporated in liposomes electrochemical immunosensors could be obtained with the voltamogramms showing strong molecular recognition with the antibodies. These results indicated that phospholipids serve as a suitable matrix for immobilization of peptides, and confirmed the importance of structure preservation in electrochemical immunosensors.