Published in

American Society for Microbiology, Molecular and Cellular Biology, 10(16), p. 5579-5590, 1996

DOI: 10.1128/mcb.16.10.5579

Links

Tools

Export citation

Search in Google Scholar

Two distinct regions in the 3' untranslated region of tumor necrosis factor alpha mRNA form complexes with macrophage proteins.

Journal article published in 1996 by Zdeněk Hel, Emil Skamene, Danuta Radzioch ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The production of tumor necrosis factor alpha (TNF-alpha), a key proinflammatory cytokine essential for the function of the immune system, is regulated at both the transcriptional and posttranscriptional levels. In this report, we focus on the interaction of TNF-alpha mRNA with macrophage proteins, likely mediators of its post-transcriptional control. Mapping of murine TNF-alpha mRNA by using a combination of RNase protection and RNA gel shift assays revealed that two distinct sites within the 3' untranslated region (3'-UTR) engage in the formation of four major RNA-protein complexes, while no protein binding to the 5'-UTR or coding sequences was detected. The protein-binding site of three RNA-protein complexes, A, B, and C, is positioned between bases 1291 and 1320 inside the AU-rich sequence, a region previously shown to be crucial for both translational repression and lipopolysaccharide inducibility of TNF-alpha. An additional protein complex (complex D) whose binding to the TNF-alpha 3'-UTR was independent of the presence of AU-rich sequences was identified. At least six protein species with apparent molecular masses of 48, 52, 54, 81, 101, and 150 kDa are in direct contact with TNF-alpha mRNA. The RNA-binding proteins are differentially distributed in the cell: complexes A and D are present predominantly in the cytosol, while complexes B and C are found in the nucleus and associated with particulate cytoplasmic fractions. Cytosolic complex A displays comparatively high specificity for TNF-alpha mRNA, while the binding of complexes B and C to TNF-alpha mRNA is readily competed for by other AU-rich sequence-containing RNAs. In summary, these findings demonstrate that two regions of the TNF-alpha mRNA molecule interact with macrophage RNA-binding protein complexes that differ in their core protein composition, cellular distribution, and affinity to TNF-alpha mRNA.