Dissemin is shutting down on January 1st, 2025

Published in

CSIRO Publishing, Environmental Chemistry, 3(9), p. 221

DOI: 10.1071/en11168

Links

Tools

Export citation

Search in Google Scholar

Effect of aqueous-phase processing on aerosol chemistry and size distributions in Fresno, California, during wintertime

Journal article published in 2012 by Xinlei Ge, Qi Zhang, Yele Sun, Christopher R. Ruehl ORCID, Ari Setyan ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Environmental contextAqueous-phase processes in fogs and clouds can significantly alter atmospheric fine particles with consequences for climate and human health. We studied the influence of fog and rain on atmospheric aerosol properties, and show that aqueous-phase reactions contribute to the production of secondary aerosol species and change significantly the composition and microphysical properties of aerosols. In contrast, rains effectively remove aerosols and reduce their concentrations. AbstractSubmicrometre aerosols (PM1) were characterised in situ with a high resolution time-of-flight aerosol mass spectrometer and a scanning mobility particle sizer in Fresno, CA, from 9 to 23 January 2010. Three dense fog events occurred during the first week of the campaign whereas the last week was influenced by frequent rain events. We thus studied the effects of aqueous-phase processing on aerosol properties by examining the temporal variations of submicrometre aerosol composition and size distributions. Rains removed secondary species effectively, leading to low loadings of PM1 dominated by primary organic species. Fog episodes, however, increased the concentrations of secondary aerosol species (sulfate, nitrate, ammonium and oxygenated organic aerosol). The size distributions of these secondary species, which always showed a droplet mode peaking at ~500 nm in the vacuum aerodynamic diameter, increased in mode size during fog episodes as well. In addition, the oxygen-to-carbon ratio of oxygenated organic species increased in foggy days, indicating that fog processing likely enhances the production of secondary organic aerosol as well as its oxidation degree. Overall, our observations show that aqueous-phase processes significantly affect submicrometre aerosol chemistry and microphysics in the Central Valley of California during winter, responsible for the production of secondary inorganic and organic aerosol species and the formation of droplet mode particles, thus altering the climatic and health effects of ambient aerosols in this region.