Published in

American Chemical Society, Journal of Chemical Information and Modeling, 6(53), p. 1463-1474, 2013

DOI: 10.1021/ci400132q

Links

Tools

Export citation

Search in Google Scholar

Pharmacophore Assessment Through 3-D QSAR: Evaluation of the Predictive Ability on New Derivatives by the Application on a Series of Antitubercular Agents

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Pharmacophoric mapping is a useful procedure to frame, especially when crystallographic receptor structures are unavailable as in ligand-based studies, the hypothetical site of interaction. In this study, 71 pyrrole derivatives active against M. tuberculosis were used to derive through a recent new 3-D QSAR protocol, 3-D QSAutogrid/R, several predictive 3-D QSAR models on compounds aligned by a previously reported pharmacophoric application. A final multi probe (MP) 3-D QSAR model was then obtained configuring itself as a tool to derive pharmacophoric quantitative models. To stress the applicability of the described models, an external test set of unrelated and newly synthesized series of D-4-amino-3-isoxazolidinone derivatives found to be active at micromolar level against M. tuberculosis, was used and the predicted bioactivities were in good agreement with the experimental values. The 3-D QSAutogrid/R procedure proved to be able to correlate by a single multi-informative scenario the different activity molecular profiles thus confirming its usefulness in the rational drug design approach.