Published in

American Chemical Society, Journal of Chemical and Engineering Data, 3(51), p. 1148-1155, 2006

DOI: 10.1021/je0600707

Links

Tools

Export citation

Search in Google Scholar

Acoustic Determination of Thermophysical Properties and Critical Parameters for R404A and Critical Line ofxCO2+ (1 −x)R404A

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The thermophysical properties and critical parameters for the alternative refrigerant R404A (52 wt % of 1,1,1-trifluoroethane (R143a) + 44 wt % of pentafluoroethane (R125) + 4 wt % of 1,1,1,2-tetrafluoroethane (R134a)) were investigated using two different acoustic techniques. The critical behavior of the system xCO2 + (1 − x)R404A was also investigated. Experimental data of speed of sound in liquid R404A from 258 K to 338 K and pressures up to 65 MPa were measured using a pulse-echo method. Derived thermodynamic properties are calculated, combining our experimental data with density and isobaric heat capacity values published by other authors. Measurements of the critical temperature Tc and pressure pc on (R404A) and mixtures of xCO2 + (1 − x)R404A were performed using another simple ultrasonic time-delay technique. The binary critical line was determined over the whole composition range showing that this system deviates only slightly from ideality since the critical line is a continuous line. The Peng−Robinson equation of state with conventional mixing and combining rules was used to correlate the binary experimental data.