Published in

Springer, Lecture Notes in Computer Science, p. 369-380, 2005

DOI: 10.1007/11505730_31

Links

Tools

Export citation

Search in Google Scholar

Regional Whole Body Fat Quantification in Mice

Journal article published in 2005 by Xenophon Papademetris, Pavel Shkarin, Lawrence H. Staib, Kevin L. Behar ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Obesity has risen to epidemic levels in the United States and around the world. Global indices of obesity such as the body mass index (BMI) have been known to be inaccurate predictors of risk of diabetes, and it is commonly recognized that the distribution of fat in the body is a key measure. In this work, we describe the early development of image analysis methods to quantify regional body fat distribution in groups of both male and female wildtype mice using magnetic resonance images. In particular, we present a new formulation which extends the expectation-maximization formalism commonly applied in brain segmentation to multi-exponential data and applies it to the problem of regional whole body fat quantification. Previous segmentation approaches for multispectral data typically perform the classification on fitted parameters, such as the density and the relaxation times. In contrast, our method directly computes a likelihood term from the raw data and hence explicitly accounts for errors in the fitting process, while still using the fitted parameters to model the variation in the appearance of each tissue class. Early validation results, using magnetic resonance spectroscopic imaging as a gold standard, are encouraging. We also present results demonstrating differences in fat distribution between male and female mice.