Published in

MDPI, Mathematics, 17(9), p. 2044, 2021

DOI: 10.3390/math9172044

Links

Tools

Export citation

Search in Google Scholar

Estimating Spatial Econometrics Models with Integrated Nested Laplace Approximation

Journal article published in 2015 by Roger S. Bivand, Virgilio Gómez-Rubio ORCID, Håvard Rue
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Integrated Nested Laplace Approximation (Rue et al., 2009) provides a fast and effective method for marginal inference on Bayesian hierarchical models. This methodology has been implemented in the R-INLA package which permits INLA to be used from within R statistical software. Although INLA is implemented as a general methodology, its use in practice is limited to the models implemented in the R-INLA package. Spatial autoregressive models are widely used in spatial econometrics but have until now been missing from the R-INLA package. In this paper, we describe the implementation and application of a new class of latent models in INLA made available through R-INLA. This new latent class implements a standard spatial lag model, which is widely used and that can be used to build more complex models in spatial econometrics. The implementation of this latent model in R-INLA also means that all the other features of INLA can be used for model fitting, model selection and inference in spatial econometrics, as will be shown in this paper. Finally, we will illustrate the use of this new latent model and its applications with two datasets based on Gaussian and binary outcomes.