Published in

Cell Press, American Journal of Human Genetics, 1(98), p. 202-209, 2016

DOI: 10.1016/j.ajhg.2015.11.004

Links

Tools

Export citation

Search in Google Scholar

Biallelic Mutations in UNC80 Cause Persistent Hypotonia, Encephalopathy, Growth Retardation, and Severe Intellectual Disability

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Ion channel proteins are required for both the establishment of resting membrane potentials and the generation of action potentials. Hundreds of mutations in genes encoding voltage-gated ion channels responsible for action potential generation have been found to cause severe neurological diseases. In contrast, the roles of voltage-independent "leak" channels, important for the establishment and maintenance of resting membrane potentials upon which action potentials are generated, are not well established in human disease. UNC80 is a large component of the NALCN sodium-leak channel complex that regulates the basal excitability of the nervous system. Loss-of-function mutations of NALCN cause infantile hypotonia with psychomotor retardation and characteristic facies (IHPRF). We report four individuals from three unrelated families who have homozygous missense or compound heterozygous truncating mutations in UNC80 and persistent hypotonia, encephalopathy, growth failure, and severe intellectual disability. Compared to control cells, HEK293T cells transfected with an expression plasmid containing the c.5098C>T (p.Pro1700Ser) UNC80 mutation found in one individual showed markedly decreased NALCN channel currents. Our findings demonstrate the fundamental significance of UNC80 and basal ionic conductance to human health.