Published in

Oxford University Press, Endocrinology, 1(149), p. 339-345, 2007

DOI: 10.1210/en.2007-0198

Links

Tools

Export citation

Search in Google Scholar

Ligands Differentially Modify the Nuclear Mobility of Estrogen Receptors α and β

Journal article published in 2007 by Anastasios E. Damdimopoulos ORCID, Giannis Spyrou, Jan-Åke Gustafsson
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Signaling of nuclear receptors depends on the structure of their ligands, with different ligands eliciting different responses. In this study using a comparative analysis, an array of ligands was examined for effects on estrogen receptor alpha (ERalpha) and ERbeta mobility. Our results indicated that these two receptors share similarities in response to some ligands but differ significantly in response to others. Our results suggest that for ERalpha, ligands can be classified into three distinct groups: 1) ligands that do not affect the mobility of the receptor, 2) ligands that cause a moderate effect, and 3) ligands that strongly impact mobility of ERalpha. Interestingly, we found that for ERbeta such a classification was not possible because ERbeta ligands caused a wider spectrum of responses. One of the main differences between the two receptors was the response toward the antiestrogens ICI and raloxifene, which was not attributable to differential subnuclear localization or different conformations of helix 12 in the C-terminal domain. We showed that both of these ligands caused a robust phenotype, leading to an almost total immobilization of ERalpha, whereas ERbeta retained its mobility; we provide evidence that the mobility of the two receptors depends upon the function of the proteasome machinery. This novel finding that ERbeta retains its mobility in the presence of antiestrogens could be important for its ability to regulate genes that do not contain classic estrogen response element sites and do not require DNA binding and could be used in the investigation of ligands that show ER subtype specificity.