Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Advanced Functional Materials, 29(23), p. 3701-3709, 2013

DOI: 10.1002/adfm.201203711

Links

Tools

Export citation

Search in Google Scholar

Cathodoluminescence Modulation of ZnS Nanostructures by Morphology, Doping, and Temperature

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Spatially and spectrally resolved cathodoluminescence (CL) is one of the most effective methods to explore the optical properties of a nanomaterials and reveals the spatial distribution as well as the correlation between the luminescence and the sample morphology and microstructure. Here, CL modulation of ZnS nanostructures by controlled morphologies, Fe/Mn doping, and measurement temperature is demonstrated. High quality ZnS nanobelts and nanorods are synthesized on an Au-coated Si substrate and an Au-coated GaAs substrate via a facile thermal evaporation route. A room-temperature sharp ultraviolet (UV) lasing-like peak in various ZnS is achieved. The main UV luminescence peaks appear at wavelengths between 330 and 338 nm. The low temperature (32 K) CL spectrum consists of a narrow and strong UV peak centered at 330 nm and two broad, low-intensity peaks in the visible region (514 and 610 nm). Temperature-dependent CL from such single-crystalline ZnS nanobelts in the temperature range of 32 to 296 K reveals two UV peaks at 3.757 and 3.646 eV. The effects of Fe doping and Fe/Mn co-doping on the CL property of ZnS nanobelts are further investigated. These results imply that ZnS nanostructures can be used for potential luminescent materials as well as short-wavelength nanolaser light sources.