Published in

Elsevier, Applied Surface Science, 18(256), p. 5602-5605, 2010

DOI: 10.1016/j.apsusc.2010.03.034

Links

Tools

Export citation

Search in Google Scholar

Fabrication of diamond nanorods for gas sensing applications

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Diamond nanorods were fabricated for a sensing device by utilizing reactive ion etching in CF4/O2 radio frequency plasma. The length of the nanorods has been controlled by the ion etching time. The obtained morphologies were investigated by scanning electron microscopy. The gas sensing properties of the H-terminated diamond-based sensor structures are indicating that we have achieved high sensitivity to detect phosgene gas. Also, our sensor exhibited good selectivity between humid air and phosgene gas if the measurement is conducted at elevated temperatures, such as 140 °C. Furthermore, such sensor response rating could reach as high value as 4344 for the phosgene gas, which was evaluated for the sample consisting of the longest nanorods (up to 200 nm).