Published in

Elsevier, Estuarine, Coastal and Shelf Science, 4(91), p. 544-550

DOI: 10.1016/j.ecss.2010.12.011

Links

Tools

Export citation

Search in Google Scholar

Nekton migration and feeding location in a coastal area – A stable isotope approach

Journal article published in 2011 by C. Vinagre ORCID, C. Máguas ORCID, H. N. Cabral, M. J. Costa
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Stable isotope analysis was used to investigate nekton movements and feeding location in a coastal area adjacent to a major European river, the Tagus, Portugal. Particulate organic matter isotopic signatures presented a gradient from the river towards the sea. Phytoplankton, zooplankton, polychaetes and the crab, Polybius henslowii, provided evidence of the incorporation of terrestrial organic matter into the lower levels of the food web, reflecting local isotopic signatures. Two fish species reflected the coastal isotopic gradient in δ13C, Diplodus vulgaris and Arnoglossus imperialis and the latter also presented isotopic differerences among the sites for δ15N. Alloteuthis subulata, Trisopterus luscus and Callionymus lyra were isotopicaly distinct among sites for δ15N. An increase of δ15N with length was detected for T. luscus and C. lyra, possibly showing ontogenic trophic level changes. Since A. subulata did not present differences in length and still showed isotopic distinction for δ15N, among areas, it was concluded that local biogeochemical factors may also have an influence. Diplodus bellottii and Dicologlossa cuneata did not reflect any isotopic signature reflecting their wide migration and feeding across the coastal area. Central isotopic ranges, defined as the site mean values for δ13C and δ15N ± 1‰ were determined for each species and site and those deviating from these were considered transient individuals. Central isotopic ranges accounted for 87% of A. imperialis, 80% of A. subulata, 77% of T. luscus, 67% of C. lyra and 50% of D. vulgaris. The number of individuals within each central isotopic range was surprisingly high for an open coastal area and comparable to those of more structured environments.Research highlights► Lower levels of the food web reflected the coastal gradient in isotopic signatures. ► Nekton species presented high levels of residency. ► Movement of coastal organisms can be studied with stable isotopes as in estuaries.