Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Applied Soft Computing, 4(13), p. 1728-1740

DOI: 10.1016/j.asoc.2012.12.016

Links

Tools

Export citation

Search in Google Scholar

A soft-computing Pareto-based meta-heuristic algorithm for a multi-objective multi-server facility location problem

Journal article published in 2013 by Seyed Habib A. Rahmati, Vahid Hajipour, Seyed Taghi Akhavan Niaki ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this paper, a novel multi-objective location model within multi-server queuing framework is proposed, in which facilities behave as M/M/m queues. In the developed model of the problem, the constraints of selecting the nearest-facility along with the service level restriction are considered to bring the model closer to reality. Three objective functions are also considered including minimizing (I) sum of the aggregate travel and waiting times, (II) maximum idle time of all facilities, and (III) the budget required to cover the costs of establishing the selected facilities plus server staffing costs. Since the developed model of the problem is of an NP-hard type and inexact solutions are more probable to be obtained, soft computing techniques, specifically evolutionary computations, are generally used to cope with the lack of precision. From different terms of evolutionary computations, this paper proposes a Pareto-based metaheuristic algorithm called multi-objective harmony search (MOHS) to solve the problem. To validate the results obtained, two popular algorithms including non-dominated sorting genetic algorithm (NSGA-II) and non-dominated ranking genetic algorithm (NRGA) are utilized as well. In order to demonstrate the proposed methodology and to compare the performances in terms of Pareto-based solution measures, the Taguchi approach is first utilized to tune the parameters of the proposed algorithms, where a new response metric named multi-objective coefficient of variation (MOCV) is introduced. Then, the results of implementing the algorithms on some test problems show that the proposed MOHS outperforms the other two algorithms in terms of computational time.