Published in

Elsevier, International Journal of Biological Macromolecules, 4(37), p. 205-211, 2005

DOI: 10.1016/j.ijbiomac.2005.10.010

Links

Tools

Export citation

Search in Google Scholar

Reversible thermal inactivation and conformational states in denaturant guanidinium of a calcium-dependent peroxidase from Euphorbia characias

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The changes in the heme environment and overall structure occurring during reversible thermal inactivation and in denaturant guanidinium of Euphorbia characias latex peroxidase (ELP) were investigated in the presence and absence of calcium ions. Native active enzyme had an absorption spectrum typical of a quantum-mixed spin ferric heme protein. After 40 min at 60 degrees C ELP was fully inactivated showing the spectroscopic behavior of a pure hexacoordinate low-spin protein. The addition of Ca2+ to the thermally inactivated enzyme restored its native activity and its spectroscopic features, but did not increase the stability of the protein in guanidinium. It is concluded that, in Euphorbia peroxidase, Ca2+ ion play a key role in conferring structural stability to the heme environment and in retaining active site geometry.