Published in

Elsevier, Computers and Chemical Engineering, (75), p. 105-119

DOI: 10.1016/j.compchemeng.2015.01.022

Links

Tools

Export citation

Search in Google Scholar

Optimizing Scheduling of Refinery Operations based on Piecewise Linear Models

Journal article published in 2015 by Xiaoyong Gao, Yongheng Jiang, Tao Chen ORCID, Dexian Huang
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Optimizing scheduling is an effective way to improve the profit of refineries; it usually requires accurate models to describe the complex and nonlinear refining processes. However, conventional nonlinear models will result in a complex mixed integer nonlinear programming (MINLP) problem for scheduling. This paper presents a piecewise linear (PWL) modeling approach, which can describe global nonlinearity with locally linear functions, to refinery scheduling. Specifically, a high level canonical PWL representation is adopted to give a simple yet effective partition of the domain of decision variables. Furthermore, a unified partitioning strategy is proposed to model multiple response functions defined on the same domain. Based on the proposed PWL partitioning and modeling strategy, the original MINLP can be replaced by mixed integer linear programming (MILP), which can be readily solved using standard optimization algorithms. The effectiveness of the proposed strategy is demonstrated by a case study originated from a refinery in China.