Published in

American Physical Society, Physical Review Letters, 2(96)

DOI: 10.1103/physrevlett.96.025502

Links

Tools

Export citation

Search in Google Scholar

Recombination-Induced Stacking Faults: Evidence for a General Mechanism in Hexagonal SiC

Journal article published in 2006 by A. Galeckas, J. Linnros ORCID, P. Pirouz
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We report on optically induced nucleation and expansion of stacking faults in hexagonal SiC structures. The activation energy for partial dislocation glide under optical excitation is found to reduce to 0.25 +/- 0.05 eV, which is about 2 eV lower than for pure thermal activation. From the measurements of thermal activation and below-gap excitation spectroscopy of dislocation glide, we conclude that the elementary process controlling expansion of stacking faults is kink pair nucleation aided by the phonon-kick mechanism. We propose that solitons on 30 degrees Si(g) partials with a silicon core act as deep 2.4 eV + Ev trap sites, readily providing electron-hole recombination energy to enhance the motion of dislocations. Our results suggest that this is a general mechanism of structural degradation in hexagonal SiC.