Published in

Institute of Electrical and Electronics Engineers, IEEE Engineering in Medicine and Biology Magazine, 6(28), p. 24-29, 2009

DOI: 10.1109/memb.2009.934628

Links

Tools

Export citation

Search in Google Scholar

Concealed conduction effects in the atrium

Journal article published in 2009 by Jan J. Zebrowski, Pawel Kuklik ORCID, Teodor Buchner, Rafał Baranowski
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A one-dimensional (1-D) model of the atrium together with the sinoatrial (SA) and atrioventricular (AV) nodes is presented in this article. The two nodes are each modeled by 15-element, diffusively coupled, modified van der Pol oscillator chains, while the atrium tissue is represented by a 90-element chain of diffusively coupled FitzHugh-Nagumo (FHN) equations. The modified van der Pol oscillators are able to reproduce physiologically important properties, such as the refraction period, phase-sensitivity properties, and modes of change of the action potential frequency. The activity of both branches of the autonomous nervous system may be introduced into the model in a simplified way. The model enables the study of the effect of the magnitude of the action potential conduction rate in the nodes on interspike intervals (ISIs; equivalent of RR intervals) and explains the occurrence of RR-interval alternans in certain patients. The effect of breathing modulation of heart rate and of a single deep breath can also be modeled. Finally, concealed conduction effects in the atrium are studied, yielding results comparable with recorded heart rate variability data.