Dissemin is shutting down on January 1st, 2025

Published in

Springer Verlag, Journal of Nanoparticle Research, 12(16)

DOI: 10.1007/s11051-014-2752-0

Links

Tools

Export citation

Search in Google Scholar

Effect of size on fracture and tensile manipulation of gold nanowires

Journal article published in 2014 by Fenying Wang, Yanfeng Dai, Jianwei Zhao, Qianjin Li ORCID, Bin Zhang
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The fracture of metallic nanowires has attracted much attention owing to its reliability of application in nanoelectromechanical system. In this paper, we studied the fracture of [100] single-crystal gold nanowire subjected to uniaxial tension. The statistical breaking position distributions showed that the size effects had dominated the deformation and fracture of nanowires, and the quasi-static tensile deformations are insensitive to the styles of tensile rates. Furthermore, it was observed that the small-sized nanowire broke in the middle with disordered crystalline structure; for the middle-sized nanowire, although slippage plane had maintained the lattice degree, the fracture also happened in the middle due to symmetric tension; for the large-sized nanowire, the slippage was destroyed by symmetric tension, which induced the broken neck at one end of the nanowire. When the nanowire width is less than 5a (“a” means lattice constant, 0.408 nm for gold), the mechanical strength is relatively strong with obvious uncertainty, which can be attributed to the surface atom effect; when the width is larger than 5a, the influence of size on the mechanical property is more obvious at the constant strain rate than that at the absolute rate. Finally, the mechanical strength of the nanowire decreases with the size increasing.