Published in

Elsevier, Thin Solid Films, 22(519), p. 8125-8134, 2011

DOI: 10.1016/j.tsf.2011.05.078

Links

Tools

Export citation

Search in Google Scholar

Comparison of dye solar cell counter electrodes based on different carbon nanostructures

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Three characteristically different carbon nanomaterials were compared and analyzed as platinum-free counter electrodes for dye solar cells: 1) single-walled carbon nanotube (SWCNT) random network films on glass, 2) aligned multi-walled carbon nanotube (MWCNT) forest films on Inconel steel and quartz, and 3) pressed carbon nanoparticle composite films on indium tin oxide-polyethylene terephtalate plastic. Results from electrochemical impedance spectroscopy and electron microscopy were discussed in terms of the catalytic activity, conductivity, thickness, transparency and flexibility of the electrode films. The SWCNT films showed reasonable catalytic performance at similar series resistance compared to platinized fluorine doped tin oxide-coated glass. The MWCNTs had similar catalytic activity, but the electrochemical performance of the films was limited by their high porosity. Carbon nanoparticle films had the lowest charge transfer resistance resulting from a combination of high catalytic activity and dense packing of the material.