Published in

American Chemical Society, Inorganic Chemistry, 18(50), p. 9147-9152, 2011

DOI: 10.1021/ic201376t

Links

Tools

Export citation

Search in Google Scholar

Isoreticular Expansion of Metal-Organic Frameworks with Triangular and Square Building Units and the Lowest Calculated Density for Porous Crystals

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The concept and occurrence of isoreticular (same topology) series of metal-organic frameworks (MOFs) is reviewed. We describe the preparation, characterization, and crystal structures of three new MOFs that are isoreticular expansions of known materials with the tbo (Cu(3)(4,4',4''-(benzene-1,3,5-triyl-tris(benzene-4,1-diyl))tribenzoate)(2), MOF-399) and pto topologies (Cu(3)(4,4',4''-(benzene-1,3,5-triyl-tribenzoate)(2), MOF-143; Cu(3)(4,4',4''-(triazine-2,4,6-triyl-tris(benzene-4,1-diyl))tribenzoate)(2), MOF-388). One of these materials (MOF-399) has a unit cell volume 17 times larger than that of the first reported material isoreticular to it, and has the highest porosity (94%) and lowest density (0.126 g cm(-3)) of any MOFs reported to date.