Published in

American Chemical Society, Journal of the American Chemical Society, 34(128), p. 11054-11061, 2006

DOI: 10.1021/ja060598w

Links

Tools

Export citation

Search in Google Scholar

Semiconductor Surface-Induced 1,3-Hydrogen Shift: The Role of Covalent vs Zwitterionic Character

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) are used to compare the reaction of 1,2-cyclohexanedione (1,2-CHD) with Si(001) and diamond(001) surface dimers under ultra-high-vacuum conditions. 1,2-CHD is known to undergo a keto-enol tautomerization, with the monoenol being the primary equilibrium species in the solid and gas phases. XPS and FTIR data demonstrate that 1,2-CHD reacts with diamond(001) through the OH group of the monoenol, resulting in only one O atom being bonded to the surface. In contrast, XPS and FTIR data suggest that both oxygen atoms in the 1,2-CHD molecule bond via Si-O-C linkages to the Si(001) surface dimer, and that the molecule undergoes an intramolecular 1,3-H shift. While the Si(001) and diamond(001) surfaces are both comprised of surface dimers, the diamond(001) dimer is symmetric, with little charge separation, whereas the Si(001) dimer is tilted and exhibits zwitterionic character. The different reaction products that are observed when clean Si(001) and diamond(001) surfaces are exposed to 1,2-CHD demonstrate the importance of charge separation in promoting a 1,3-H shift and provide new mechanistic insights that may be applicable to a variety of organic reactions.