Published in

Elsevier, Journal of Biotechnology, 3(127), p. 452-461, 2007

DOI: 10.1016/j.jbiotec.2006.08.002

Links

Tools

Export citation

Search in Google Scholar

Downstream processing of triple layered rotavirus like particles

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Rotavirus like particles (RLPs) constitute a potential vaccine for the prevention of rotavirus disease, responsible for the death of more than half a million children each year. Increasing demands for pre-clinical trials material require the development of reproducible, scaleable and cost-effective purification strategies as alternatives to the traditional laboratory scale CsCl density gradient ultracentrifugation methods commonly used for the purification of these complex particles. Self-assembled virus like particles (VLPs) composed by VP2, VP6 and VP7 rotavirus proteins (VLPs 2/6/7) were produced in 5l scale using the insect cells/baculovirus expression system. A purification process using depth filtration, ultrafiltration and size exclusion chromatography as stepwise unit operations was developed. Removal of non-assembled rotavirus proteins, concurrently formed particles (RLP 2/6), particle aggregates and products of particle degradation due to shear was achieved. Particle stability during storage was studied and assessed using size exclusion chromatography as an analytical tool. Formulations containing either glycerol (10% v/v) or trehalose (0.5 M) were able to maintain 75% of intact triple layered VLPs, at 4 degrees C, up to 4 months. The overall recovery yield was 37% with removal of 95% of host cell proteins and 99% of the host cell DNA, constituting a promising strategy for the downstream processing of other VLPs.