Dissemin is shutting down on January 1st, 2025

Published in

Institute of Electrical and Electronics Engineers, IEEE Transactions on Evolutionary Computation, 6(10), p. 658-675, 2006

DOI: 10.1109/tevc.2006.872344

Links

Tools

Export citation

Search in Google Scholar

A Multiobjective Optimization-Based Evolutionary Algorithm for Constrained Optimization

Journal article published in 2006 by Zixing Cai, Yong Wang ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A considerable number of constrained optimization evolutionary algorithms (COEAs) have been proposed due to increasing interest in solving constrained optimization problems (COPs) by evolutionary algorithms (EAs). In this paper, we first review existing COEAs. Then, a novel EA for constrained optimization is presented. In the process of population evolution, our algorithm is based on multiobjective optimization techniques, i.e., an individual in the parent population may be replaced if it is dominated by a nondominated individual in the offspring population. In addition, three models of a population-based algorithm-generator and an infeasible solution archiving and replacement mechanism are introduced. Furthermore, the simplex crossover is used as a recombination operator to enrich the exploration and exploitation abilities of the approach proposed. The new approach is tested on 13 well-known benchmark functions, and the empirical evidence suggests that it is robust, efficient, and generic when handling linear/nonlinear equality/inequality constraints. Compared with some other state-of-the-art algorithms, our algorithm remarkably outperforms them in terms of the best, mean, and worst objective function values and the standard deviations. It is noteworthy that our algorithm does not require the transformation of equality constraints into inequality constraints