Published in

Portland Press, Biochemical Society Transactions, 3(40), p. 475-491, 2012

DOI: 10.1042/bst20120056

Links

Tools

Export citation

Search in Google Scholar

The emergence of protein complexes: quaternary structure, dynamics and allostery

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

All proteins require physical interactions with other proteins in order to perform their functions. Most of them oligomerize into homomers, and a vast majority of these homomers interact with other proteins, at least part of the time, forming transient or obligate heteromers. In the present paper, we review the structural, biophysical and evolutionary aspects of these protein interactions. We discuss how protein function and stability benefit from oligomerization, as well as evolutionary pathways by which oligomers emerge, mostly from the perspective of homomers. Finally, we emphasize the specificities of heteromeric complexes and their structure and evolution. We also discuss two analytical approaches increasingly being used to study protein structures as well as their interactions. First, we review the use of the biological networks and graph theory for analysis of protein interactions and structure. Secondly, we discuss recent advances in techniques for detecting correlated mutations, with the emphasis on their role in identifying pathways of allosteric communication.