Dissemin is shutting down on January 1st, 2025

Published in

American Physical Society, Physical Review A, 1(81), 2010

DOI: 10.1103/physreva.81.013617

Links

Tools

Export citation

Search in Google Scholar

Double diffraction in an atomic gravimeter

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We demonstrate the realization of a new scheme for cold atom gravimetry based on the use of double diffraction beamsplitters recently demonstrated in \cite{Leveque}, where the use of two retro-reflected Raman beams allows symmetric diffraction in $± \hbar k_{eff}$ momenta. Though in principle restricted to the case of zero Doppler shift, for which the two pairs of Raman beams are simultaneously resonant, we demonstrate that such diffraction pulses can remain efficient on atoms with non zero velocity, such as in a gravimeter, when modulating the frequency of one of the two Raman laser sources. We use such pulses to realize an interferometer insensitive to laser phase noise and some of the dominant systematics. This reduces the technical requirements and would allow the realization of a simple atomic gravimeter. We demonstrate a sensitivity of $1.2\times10^{-7}g$ per shot.