Dissemin is shutting down on January 1st, 2025

Published in

Springer Verlag, Journal of Solid State Electrochemistry, 7-8(12), p. 995-1001

DOI: 10.1007/s10008-007-0419-9

Links

Tools

Export citation

Search in Google Scholar

Impact of carbon structure and morphology on the electrochemical performance of LiFePO4/C composites

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The electrochemical performance of LiFePO4/C composites in lithium cells is closely correlated to pressed pellet conductivities measured by AC impedance methods. These composite conductivities are a strong function not only of the amount of carbon but of its structure and distribution. Ideally, the amount of carbon in composites should be minimal (less than about 2 wtpercent) so as not to decrease the energy density unduly. This is particularly important for plug-in hybrid electric vehicle applications (PHEVs) where both high power and moderate energy density are required. Optimization of the carbon structure, particularly the sp2/sp3 and disordered/graphene (D/G) ratios, improves the electronic conductivity while minimizing the carbon amount. Manipulation of the carbon structure can be achieved via the use of synthetic additives including ironcontaining graphitization catalysts. Additionally, combustion synthesis techniques allow co-synthesis of LiFePO4 and carbon fibers or nanotubes, which can act as"nanowires" for the conduction of current during cell operation.