Dissemin is shutting down on January 1st, 2025

Published in

American Geophysical Union, Water Resources Research, 12(50), p. 9162-9176, 2014

DOI: 10.1002/2014wr015858

Links

Tools

Export citation

Search in Google Scholar

Subsecond pore-scale displacement processes and relaxation dynamics in multiphase flow

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

With recent advances at X-ray micro-computed tomography (μCT) synchrotron beam lines, it is now possible to study pore-scale flow in porous rock under dynamic flow conditions. The collection of 4 dimensional data allows for the direct 3D visualization of fluid-fluid displacement in porous rock as a function of time. However, even state-of-the-art fast-μCT scans require between one and a few seconds to complete and the much faster fluid movement occurring during that time interval is manifested as imaging artifacts in the reconstructed 3D volume. We present an approach to analyze the 2D radiograph data collected during fast-μCT to study the pore-scale displacement dynamics on the time scale of 40 milliseconds which is near the intrinsic time scale of individual Haines jumps. We present a methodology to identify the time intervals at which pore scale displacement events in the observed field of view occur and hence, how reconstruction intervals can be chosen to avoid fluid-movement induced reconstruction artifacts. We further quantify the size, order, frequency, and location of fluid-fluid displacement at the millisecond time scale. We observe that after a displacement event, the pore scale fluid distribution relaxes to (quasi-) equilibrium in cascades of pore-scale fluid re-arrangements with an average relaxation time for the whole cascade between 0.5 and 2.0 seconds. These findings help to identify the flow regimes and intrinsic time and length scales relevant to fractional flow. While the focus of the work is in the context of multiphase flow, the approach could be applied to many different μCT applications where morphological changes occur at a time scale less than that required for collecting a μCT scan.