Published in

Royal Society of Chemistry, RSC Advances, 40(3), p. 18317

DOI: 10.1039/c3ra42741b

Links

Tools

Export citation

Search in Google Scholar

Enhanced Vickers hardness by quasi-3D boron network in MoB2

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Molybdenum borides including α-MoB2 and β-MoB2 have been successfully synthesized from boron and molybdenum at high pressure and high temperature (HPHT). The crystalline structures are confirmed by Rietveld refinements in the hexagonal (P6/mmm) and rhombohedral (R-3m) crystal systems for α- and β-MoB2, respectively. The values of Vickers hardness (HV) are 15.2 GPa for α-MoB2, which is firstly obtained, and 22.0 GPa for β-MoB2. The hardness results for α- and β-MoB2 are in good agreement with theoretical values calculated by first-principle calculations. The difference in hardness between α- and β-MoB2 is attributed to the puckered quasi-3D (three dimensional) boron layers in β-MoB2 which is confirmed by the calculated results of the Electron Localization Function (ELF) and elastic constants. These results are helpful to understand the hardness mechanism and to design superhard transition-metal borides (TMBs).