Published in

Elsevier, Journal of Molecular Catalysis A: Chemical, 1-2(320), p. 47-55

DOI: 10.1016/j.molcata.2009.12.014

Links

Tools

Export citation

Search in Google Scholar

Partial oxidation of methane over bimetallic copper-cerium oxide catalysts

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The performance of bimetallic copper-cerium oxides was investigated for the catalytic partial oxidation of methane. They were synthesized by two routes using either the intermetallic compound CeCu2 as catalytic precursor or the sol-gel method via cerium and copper nitrates (1:2) in the presence of urea. The catalysts prepared by the sol-gel method were always less active and selective than the catalyst prepared by the intermetallic route, which was comparable in catalytic behavior to noble metal catalysts on alumina (e.g. 5 wt% Rh/Al2O3, Cony. CH4 > 90%, Sel. H-2 > 99%, H-2/CO approximate to 2.0) at T= 750 degrees C. To our knowledge, this is a novelty for copper based catalysts. The copper-cerium oxide catalysts were also quite stable in the temperature range studied, 350-800 degrees C, and for a long period of time on stream. Such catalytic behavior seems to be determined by the surface morphology and composition and by an unusual interaction between the copper and cerium oxide that hinders the deactivation of the catalyst at high temperatures, which is a direct consequence of the synthetic method used in this work. Therefore, the bimetallic copper-cerium oxide catalyst obtained by the intermetallic route seem to be a good option to produce syngas with the advantage of being less expensive than the catalysts based on noble metals. (c) 2010 Elsevier B.V. All rights reserved.