Dissemin is shutting down on January 1st, 2025

Published in

Taylor and Francis Group, Journal of Turbulence, (6), p. N11

DOI: 10.1080/14685240500149831

Links

Tools

Export citation

Search in Google Scholar

Coherent vortex extraction in 3D homogeneous turbulence: comparison between orthogonal and biorthogonal wavelet decompositions

Journal article published in 2005 by Olivier Roussel, Kai Schneider ORCID, Marie Farge ORCID,
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A comparison between two different ways of extracting coherent vortices in three-dimensional (3D) homogeneous isotropic turbulence is performed, using either orthogonal or biorthogonal wavelets. The method is based on a wavelet decomposition of the vorticity field and a subsequent thresholding of the wavelet coefficients. The coherent vorticity is reconstructed from a few strong wavelet coefficients, while the incoherent vorticity is reconstructed from the remaining weak coefficients. The choice of the threshold, which has no adjustable parameters, is motivated for the orthogonal case from the denoising theory. Using only 3 % of the coefficients we show that both decompositions, that is orthogonal and biorthogonal, extract the coherent vortices. They contain most of the energy (around 99 % in both cases) and retain 74 % and 68 % of the enstrophy in the orthogonal and biorthogonal cases, respectively. The incoherent background flow for the orthogonal decomposition, which corresponds to 97 % of the wavelet coefficients, is structureless, decorrelated, and has a Gaussian velocity probability distribution function (PDF). In contrast, for the biorthogonal decomposition, the background flow exhibits quasi-two-dimensional (2D) structures and yields an exponential velocity PDF. Moreover, the biorthogonal decomposition loses 3.7% of both enstrophy and helicity, while they are conserved by the orthogonal decomposition.