Published in

Springer Verlag, Metallurgical and Materials Transactions A, 1(46), p. 148-155

DOI: 10.1007/s11661-014-2603-8

Links

Tools

Export citation

Search in Google Scholar

Cooling Curve Analysis as an Alternative to Dilatometry in Continuous Cooling Transformations

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Dilatometry and cooling curve analysis (CCA) are two methods of determining the evolution of a phase transformation with temperature. The two methods are similar conceptual in that they take an indirect measure of the transformation and extract phase fraction information from it; however, the differences between the two methods typically makes one method better suited to analyzing a given transformation. However, without a quantitative comparison between the two methods, it is difficult to use them interchangeably. We address this by presenting a quantitative comparison of CCA and dilatometry for a martensitic transformation in a 9Cr3W3CoVNb steel. The resulting phase fraction data matches very well, within 5 K (5 °C) for any given phase fraction. This paper also extends to the quantitative methodology of calorimetry to the analysis of dilatometric data, with results comparable to ASTM A1033-10, but with expected higher accuracy by accounting by variable thermal expansion coefficients.