Published in

Taylor and Francis Group, Human Vaccines and Immunotherapeutics, 9(11), p. 2312-2321

DOI: 10.1080/21645515.2015.1061159

Links

Tools

Export citation

Search in Google Scholar

iVAX: An integrated toolkit for the selection and optimization of antigens and the design of epitope-driven vaccines

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Computational vaccine design, also known as computational vaccinology, encompasses epitope mapping, antigen selection and immunogen design using computational tools. The iVAX toolkit is an integrated set of tools that has been in development since 1998 by De Groot and Martin. It comprises a suite of immunoinformatics algorithms for triaging candidate antigens, selecting immunogenic and conserved T cell epitopes, eliminating regulatory T cell epitopes, and optimizing antigens for immunogenicity and protection against disease. iVAX has been applied to vaccine development programs for emerging infectious diseases, cancer antigens and biodefense targets. Several iVAX vaccine design projects have had success in pre-clinical studies in animal models and are progressing towards clinical studies. The toolkit now incorporates a range of immunoinformatics tools for infectious disease and cancer immunotherapy vaccine design. This article will provide a guide to the iVAX approach to computational vaccinology.