Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Magnetic Resonance in Medicine, 6(58), p. 1207-1215, 2007

DOI: 10.1002/mrm.21398

Links

Tools

Export citation

Search in Google Scholar

Correction for artifacts induced by B0 and B1 field inhomogeneities in pH-sensitive Chemical Exchange Saturation Transfer (CEST) imaging

Journal article published in 2007 by Phillip Zhe Sun, Christian T. Farrar ORCID, A. Gregory Sorensen
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Chemical exchange saturation transfer (CEST) imaging provides an indirect detection mechanism that allows quantification of certain labile groups unobservable using conventional MRI. Recently, amide proton transfer (APT) imaging, a variant form of CEST imaging, has been shown capable of detecting lactic acidosis during acute ischemia, providing information complementary to that of perfusion and diffusion MRI. However, CEST contrast is usually small, and therefore, it is important to optimize experimental conditions for reliable and quantitative CEST imaging. In particular, CEST imaging is sensitive to B(0) and B(1) field, while on the other hand; field inhomogeneities persist despite recent advances in magnet technologies, especially for in vivo imaging at high fields. Consequently, correction algorithms that can compensate for field inhomogeneity-induced measurement errors in CEST imaging might be very useful. In this study, the dependence of CEST contrast on field distribution was solved and a correction algorithm was developed to compensate for field inhomogeneity-induced CEST imaging artifacts. In addition, the proposed algorithm was verified with both numerical simulation and experimental measurements, and showed nearly complete correction of CEST imaging measurement errors caused by moderate field inhomogeneity.