Published in

IOP Publishing, Journal of Optics, 8(17), p. 085901

DOI: 10.1088/2040-8978/17/8/085901

Links

Tools

Export citation

Search in Google Scholar

Light absorption mechanism in organic solar cells with hexagonal lattice nanohole aluminum transparent electrodes

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We present the design of an organic solar cell (OSC), integrated with nanohole patterned aluminum electrode with hexagonal lattice and analyze the light absorption mechanism in detail. The periodic nanohole pattern in the electrode excites a resonant waveguide mode which localizes the electromagnetic fields into the active layer at the long wavelengths where the active material usually has a relatively low absorption coefficient. The calculated maximum achievable photocurrent density indicates that OSC integrated with nanohole patterned aluminum electrode shows slightly better performance compare to that of the conventional OSC integrated with an indium tin oxide electrode. Moreover, the waveguide mode can be tuned by varying the period of the nanohole array and the thickness of nanocrystalline zinc oxide for different kinds of cell structures. By combining with other strategies to enhance the absorption at the short wavelength, our finding provides a promising way to further improve the efficiency of the OSCs.