Published in

Wiley, Chemistry - A European Journal, 4(10), p. 963-970, 2004

DOI: 10.1002/chem.200305538

Links

Tools

Export citation

Search in Google Scholar

Theoretical Studies on the Smallest Fullerene: From Monomer to Oligomers and Solid States

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Hybrid B3LYP and density-functional-based tight-binding (DFTB) computations on the solid-state structures and electronic properties of the C(20) fullerene monomer and oligomers are reported. C(20) cages with C(2), C(2h), C(i), D(3d), and D(2h) symmetries have similar energies and geometries. Release of the very high C(20) strain is, in theory, responsible for the ready oligomerization and the formation of different solid phases. Open [2+2] bonding is preferred both in the oligomers and in the infinite one-dimensional solids; the latter may exhibit metallic character. Two types of three-dimensional solids, the open [2+2] simple cubic and the body-centered cubic (bcc) forms, are proposed. The energy of the latter is lower due to the better oligomer bonding. The open [2+2] simple cubic solid should be a conductor, whereas the bcc solids are insulators. The most stable three-dimensional solid-state structure, an anisotropically compressed form of the bcc solid, has a HOMO-LUMO gap of approximately 2 eV and a larger binding energy than that of the proposed C(36) solid.