Published in

Elsevier, BBA - Bioenergetics, (1655), p. 400-408, 2004

DOI: 10.1016/j.bbabio.2003.06.005

Links

Tools

Export citation

Search in Google Scholar

The possible role of cytochrome c oxidase in stress-induced apoptosis and degenerative diseases

Journal article published in 2004 by Bernhard Kadenbach, Susanne Arnold ORCID, Icksoo Lee, Maik Hüttemann
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Apoptotic cell death can occur by two different pathways. Type 1 is initiated by the activation of death receptors (Fas, TNF-receptor-family) on the plasma membrane followed by activation of caspase 8. Type 2 involves changes in mitochondrial integrity initiated by various effectors like Ca(2+), reactive oxygen species (ROS), Bax, or ceramide, leading to the release of cytochrome c and activation of caspase 9. The release of cytochrome c is followed by a decrease of the mitochondrial membrane potential DeltaPsi(m). Recent publications have demonstrated, however, that induction of apoptosis by various effectors involves primarily a transient increase of DeltaPsi(m) for unknown reason. Here we propose a new mechanism for the increased DeltaPsi(m) based on experiments on the allosteric ATP-inhibition of cytochrome c oxidase at high matrix ATP/ADP ratios, which was concluded to maintain low levels of DeltaPsi(m) in vivo under relaxed conditions. This regulatory mechanism is based on the potential-dependency of the ATP synthase, which has maximal activity at DeltaPsi(m)=100-120 mV. The mechanism is turned off either through calcium-activated dephosphorylation of cytochrome c oxidase or by 3,5-diiodo-L-thyronine, palmitate, and probably other so far unknown effectors. Consequently, energy metabolism changes to an excited state. We propose that this change causes an increase in DeltaPsi(m), a condition for the formation of ROS and induction of apoptosis.