Published in

Oxford University Press, The Journal of Nutrition, 4(144), p. 525-532, 2014

DOI: 10.3945/jn.113.190264

Links

Tools

Export citation

Search in Google Scholar

Dietary Bovine Lactoferrin Alters Mucosal and Systemic Immune Cell Responses in Neonatal Piglets

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Lactoferrin (LF) is a multifunctional immune protein found at high concentrations in human milk. Herein, the effect of dietary bovine LF (bLF) on mucosal and systemic immune development was investigated. Colostrum-deprived piglets were fed formula containing 130 [control (Ctrl)], 367 (LF1), or 1300 (LF3) mg of bLF/(kg body weight ⋅ d). To provide passive immunity, sow serum was provided orally during the first 36 h of life. Blood, spleen, mesenteric lymph node (MLN), and ascending colon (Asc) contents were collected on day 7 (n = 10-14/group) and day 14 (n = 10-12/group). Immune cell populations were quantified by flow cytometry and immunoglobulins (Igs) were measured by ELISA. Additionally, immune cells were isolated from spleen and MLNs (n = 7/group) on day 7 and stimulated ex vivo with phytohemagglutinin or lipopolysaccharide (LPS) ± LF for 72 h. Secreted cytokine concentrations were quantified by multiplex assay. Lymphocyte populations [cluster determinant (CD)4, CD8, and natural killer cells] developed normally and were unaffected by dietary bLF. LF3 piglets tended to have 1.4 to 2 times more serum IgG than Ctrl piglets (P = 0.07) or LF1 piglets (P = 0.03), but IgA in Asc contents was unaffected by bLF. Asc IgA was 4 times higher on day 14 than day 7. Spleen cells from LF3 piglets produced 2 times more interleukin (IL)-10 and tumor necrosis factor (TNF)-α ex vivo than those from Ctrl or LF1 piglets. MLN cells from LF1 and LF3 piglets produced 40% more IL-10 and tended to produce 40% more IL-6 (P = 0.05) than those from Ctrl piglets. However, ex vivo bLF did not affect the cytokine response of spleen or MLN cells to LPS. In summary, dietary bLF alters the capacity of MLN and spleen immune cells to respond to stimulation, supporting a role for LF in the initiation of protective immune responses in these immunologically challenged neonates.