Published in

American Institute of Physics, The Journal of Chemical Physics, 7(120), p. 3323

DOI: 10.1063/1.1640997

Links

Tools

Export citation

Search in Google Scholar

Direct observation of an isopolyhalomethane O-H insertion reaction with water: Picosecond time-resolved resonance Raman (ps-TR3) study of the isobromoform reaction with water to produce a CHBr2OH product

Journal article published in 2004 by Wai Ming Kwok ORCID, Cunyuan Zhao, Yun-Liang Li, Xiangguo Guan, David Lee Phillips
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Picosecond time-resolved resonance Raman (ps-TR3) spectroscopy was used to obtain the first definitive spectroscopic observation of an isopolyhalomethane O-H insertion reaction with water. The ps-TR3 spectra show that isobromoform is produced within several picoseconds after photolysis of CHBr3 and then reacts on the hundreds of picosecond time scale with water to produce a CHBr2OH reaction product. Photolysis of low concentrations of bromoform in aqueous solution resulted in noticeable formation of HBr strong acid. Ab initio calculations show that isobromoform can react with water to produce a CHBr2(OH) O-H insertion reaction product and a HBr leaving group. This is consistent with both the ps-TR3 experiments that observe the reaction of isobromoform with water to form a CHBr2(OH) product and photolysis experiments that show HBr acid formation. We briefly discuss the implications of these results for the phase dependent behavior of polyhalomethane photochemistry in the gas phase versus water solvated environments.