Published in

Elsevier, Developmental Biology, 2(216), p. 469-480, 1999

DOI: 10.1006/dbio.1999.9519

Links

Tools

Export citation

Search in Google Scholar

Control of Muscle Cell-Type Specification in the Zebrafish Embryo by Hedgehog Signalling

Journal article published in 1999 by K. E. Lewis ORCID, P. D. Currie, S. Roy, H. Schauerte, P. Haffter, P. W. Ingham
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The specification of different muscle cell types in the zebrafish embryo requires signals that emanate from the axial mesoderm. In previous studies we and others have shown that overexpression of different members of the Hedgehog protein family can induce the differentiation of two types of slow-twitch muscles, the superficially located slow-twitch fibres and the medially located muscle pioneer cells. Here we have investigated the requirement for Hedgehog signalling in the specification of these distinct muscle cell types in two ways: first, by characterising the effects on target gene expression and muscle cell differentiation of the u-type mutants, members of a phenotypic group previously implicated in Hedgehog signalling, and second, by analysing the effects of overexpression of the Patched1 protein, a negative regulator of Hedgehog signalling. Our results support the idea that most u-type genes are required for Hedgehog signalling and indicate that while such signalling is essential for slow myocyte differentiation, the loss of activity of one signal, Sonic hedgehog, can be partially compensated for by other Hedgehog family proteins.